Transmission phase lapses in quantum dots: the role of dot-lead coupling asymmetry

نویسندگان

  • D I Golosov
  • Yuval Gefen
چکیده

Lapses of transmission phase in transport through quantum dots are ubiquitous already in the absence of interaction, in which case their precise location is determined by the signs and magnitudes of the tunnelling matrix elements. However, actual measurements for a quantum dot embedded in an Aharonov-Bohm interferometer show systematic sequences of phase lapses separated by Coulomb peaks – an issue that attracted much attention and generated controversy. Using a twolevel quantum dot as an example we show that this phenomenon can be accounted for by the combined effect of asymmetric dot-lead couplings (left lead/right lead asymmetry as well as different level broadening for different levels) and interactioninduced ”population switching” of the levels, rendering this behaviour generic. We construct and analyse a mean field scheme for an interacting quantum dot, and investigate the properties of the mean field solution, paying special attention to the character of its dependence (continuous vs. discontinuous) on the chemical potential or gate voltage. PACS numbers: 73.21.La, 73.63.Kv, 73.23.Hk, 03.65.Vf Submitted to: New J. Phys. Phase lapses in quantum dots 2

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase lapses in transmission through interacting two-level quantum dots

We investigate the appearance of π lapses in the transmission phase θ of a two-level quantum dot with Coulomb interaction U . Using the numerical and functional renormalization group methods we study the entire parameter space for spin-polarized as well as spin-degenerate dots, modeled by spinless or spinful electrons, respectively. We investigate the effect of finite temperatures T . For small...

متن کامل

Mesoscopic to universal crossover of the transmission phase of multilevel quantum dots.

Transmission phase alpha measurements of many-electron quantum dots (small mean level spacing delta) revealed universal phase lapses by pi between consecutive resonances. In contrast, for dots with only a few electrons (large delta), the appearance or not of a phase lapse depends on the dot parameters. We show that a model of a multilevel quantum dot with local Coulomb interactions and arbitrar...

متن کامل

Wavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy

In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...

متن کامل

Wavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy

In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...

متن کامل

Simulation of Direct Pumping of Quantum Dots in a Quantum Dot Laser

In this paper, the nonlinear rate equations governing a quantum dot laser isused to simulate the transient as well as the steady-state behaviors of the laser.Computation results show that the rate equations are capable of simulating true behaviorof a quantum dot laser. Then, the pump rates of the rate equations (which show indirectelectrical pumping of the quantum dots through a wetting layer) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006